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Abstract 

As soon as fluid passes over a solid surface vortices are formed at the surface of 

structure to satisfy the no slip boundary conditions at the fluid-structure 

interface. Vortices that are formed at fluid-structure interface diffuse in fluid 

domain. In the present study, the strength of vortices is evaluated on the surface 

of an oscillating structural element (cantilever beam and plate) that is interacting 

with oscillating fluid flow. In the analysis, the analysis of structural element is 

carried out by finite element method and analysis of fluid domain is carried out 

by panel method. It is assumed that the deformed geometry of the structure at 

any moment is same shape as the vortex sheet. The structure is replaced by a 

virtual vortex sheet of uniformly distributed point vortices on the surface. A few 

numerical examples are presented to show the variation of vortex strength, lift 

and pressure coefficients for different type flow passes over the oscillating rigid 

and flexible structural element in fluid medium. The strength of vortex depends 

on fluid flow characteristics around the structural element and motion of 

structure in fluid medium. 

  
Keywords: Vortices, solid-fluid interface, vortex sheet, vortex strength, structural 

element 

1 Introduction 

The process of vortex shedding is a classical problem in fluid mechanics and 

there have been many theoretical and experimental studies on various aspect of 

this problem. Vortex shedding from a bluff body has been investigated for many 

decades due to its important role in understanding fundamental fluid dynamics 

and its close link to field applications. Under particular conditions, the motion of 
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a fluid past an object results in the generation of a wake containing vortices in the 

trailing edge. In a flowing fluid, vortices are shed alternately from either side of 

the body, and the resulting changes in circulation around the body lead to 

fluctuating forces. The organized and periodic shedding of vortices may result in 

considerable fluctuating loading on the structure. As the frequency of shedding is 

approximately equal to one of the natural frequencies of structure, the structure 

often vibrates with large amplitude in a plane perpendicular to the flow direction. 

On the other hand when the structure is periodically oscillated by external 

forcing, the shedding frequency may be modified or shift from its natural 

shedding frequency to the forcing frequency. 

Howe (1987) examined the surface pressure fluctuations due to periodic 

vortex shedding from the blunt trailing edge of a coated airfoil. Guocan and 

Caimao (1991) studied numerically on near wake flows of a flat plate and calculate 

the forces on a plate in steady, oscillatory and combined flows by using the 

discrete vortex model and improved vorticity creation method. Cortelezzi and 

Leonard (1993) considered a two-dimensional unsteady flow past a semi-infinite 

plate with transverse motion. The rolling-up of the separated shear-layer was 

modeled by a point vortex whose time dependent circulation was predicted by an 

unsteady Kutta condition. Ting and Perlin (1995) experimentally determined a 

boundary condition model for the contact line in oscillatory flow, for an upright 

plate, oscillated vertically with sinusoidal motion in dye laden water. Larsen and 

Walther (1997) simulated the two dimensional viscous incompressible flow past a 

flat plate of finite thickness and length using the discrete vortex method. Both a 

fixed plate and a plate undergoing a harmonic heave and pitch motion were 

studied. Lewandowski (2002) studied the non-linear vibrations of beams excited 

by vortex shedding. 

The steady state responses of beams near the synchronization region were 

taken into account. The main aerodynamic properties of wind were described by 

using the semi empirical model proposed by Hartlen and Currie. The finite 

element method and strip method were used to formulate the equation of motion 

of the system treated. Qiu and Hsiung (2002) developed a panel-free method (PFM) 

based on the desingularized Green’s formula, to solve the radiation problem of a 
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floating body in time domain. The velocity potential due to a non-impulsive 

velocity was obtained by solving the boundary integral equation in terms of 

source strength distribution. Khatir (2004) presented an approach for solving the 

source /sink boundary integral equation by using an indirect Boundary Element 

Method. The author implemented this analysis for solving flow over 3-D obstacles 

to impose impermeability at the wall in conjunction with discrete vortex method. 

Lin Lin, Ho, Chang, Hsieh, and Chang (2005) conducted experimental study on the 

vortex shedding process induced by the interaction between a solitary wave and a 

submerged vertical plate. 

Particle image velocimetry (PIV) was used for quantitative velocity 

measurement while a particle tracing technique was used for qualitative flow 

visualization. Vortices were generated at the tip of each side of the plate. Tang 

and Paı (2007) developed a fluid-elastic model to study the dynamics of 

cantilevered plates in axial flow, with an additional support at the plate at trailing 

edge. A non-linear equation of motion, based on the inextensibility condition was 

used to account for the possible large vibration amplitude of the plate. For the 

fluid-dynamic part, an unsteady lumped vortex model was used for calculating the 

fluid loads acting on the plate undergoing deformation and for calculating the 

pressure difference across the plate and undulating wake streets behind the plate. 

In the present study, the strength of vortices on the surface of a cantilever 

beam and plate is determined in fluid medium. The lift and pressure coefficients 

are evaluated in the structural element for sinusoidal fluid flow passes over the 

structural element. Initially the structure is assumed as rigid one subsequently 

the structure is considered as flexible.  For determining the strength of vortices 

on the surface of structural element, the structure is replaced by vortex sheet and 

shape of the vortex sheet is assumed similar as the deformed shape of the   

structural element at any instant of time. 

2 Theoretical Formulation 

For weakly viscous fluid the boundary layer is very thin and the flow around 

the structure may be modeled by potential flow. If the fluid is assumed to be 

inviscid then there will be only tangential component of velocity at the solid 
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surface and normal component of velocity on the surface will be zero. The 

boundary layers on the solid surface and the wake of the trailing edge may be 

assumed as a thin layer of concentrated vorticity layer. There is a kinematic 

relationship between vorticity and velocity and it is valid for viscous as well 

inviscid fluid. In the real flow, the vorticity is such that the velocity associated 

with it satisfies the no penetration boundary conditions at the solid surface. 

Velocity induced at a point 
1r due to vorticity   located at 

0r  may be obtained by 

Biot-Savart law. 

( )
( )0 1

1 3

0

1

4

r r
V r d

r r


 −
= 

−
  (1) 

The induced velocity ( )v r  at a point r due to a point vortex of strength  at 

point 
0r  may be written as 

( ) 0

3
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r r
v r
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 −
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−
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To determine the vortex strength on the solid surface of the cantilever plate 

structure, the surface of the structure may be replaced by a vortex sheet of same 

geometry as structure and is discretized by a set of linear panels. Individual 

panels are put on the deformed contour of the surface of structure. Let the 

surface is evenly divided into N panels and the vortex strength at each vortex 

point of the panel are 1, 2, 3 ... N as shown in Figure 1. 

 

Figure 1. Point vortex at the centroids of each panel on vortex surface 
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The vortex induced velocity Vv

 

= (u, v, w)i,j at any collocation point i due to a 

point vortex of strength Γj at point j may be determined by the equation 

( ) 3

4

ij j

v

i j

r r
V r

r r


 −
=

−

 (3) 

 

Figure 2. Vortex induced velocity at point i due to a point vortex located at point j 

The total sum of vortex induced velocity at any point i in the fluid domain 

due to vortex 1, 2, 3 ... N may be written as 

1 1 2 2 3 3 ...i i i iN Na a a a +  +  + +   (4) 

Where, , 3

4

i j

i j

i j

r r
a

r r

−
=

−
 j = 1, 2, 3, ..., N 

The induced velocity at collocation point i due to unit strength of vortex at 

point j may be represent by influence coefficient 

( ), ,
, ,i j ii j

a u v w n


=   (5) 

Where, n


 is the normal of the surface at collocation point i. 

2.1 Determination of Influence Matrix 

The normal velocity component at each point on the solid surface are the 

combination of self induced velocity, the kinematic velocity i.e. free stream 

velocity, vortex induced velocity and it must be zero to satisfy the no penetration 

condition on the fluid-structure interface at any time. The zero normal flow across 

the solid surface boundary may be written as 

( )
.

0sVv n u U n
 



 
 + +  = 

 
 (6) 
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Where, ( )U t
is free stream i.e. kinematic velocity, 

.

su is velocity of structure with 

reference to coordinate axis fitted with body of the solid, Vv is vortex induced 

velocity. 

Therefore, the normal velocity component due to the all the elements 

fulfilling the no penetration boundary conditions on the surface at point 1 may be 

written as   

( )
.

11 1 12 2 13 3 1... 0in n sa a a a U t u n




 
 +  +  + +  + +  = 

 
 (7) 

The equation (7) may be written as   

11 1 12 2 13 3 1... in na a a a Rhs +  +  + +  =  (8) 

Where, ( )
. .
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 
= − +  

 
 

Specifying the boundary condition for each collocation point the following 

set of algebraic equation may be obtained for N collocation point and N vortex 

point on the body surface of the structure 
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The equation (9) may be write in matrix form 
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 (10) 

The coefficient of the matrix equation (10) ai,j is the velocity component at 

the collocation point i due to unit strength of point vortex located at point j. 

Vortex is formed on the solid surface and washed out from the surface as 

shown in Figure 3. The vortex formed at the trailing edge is known as wake vortex. 

For any instant of time the influence of instantaneously wake vortex Γw also 

affect the induced velocity. The latest wake vortex is assumed to be born on the 
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prolongation of the last panel and to have a longitudinal clearance 0.25U∞∆t from 

the trailing edge (L Tang et al. 2008). It is assumed that the movement of each 

individual wake vortex is not affected by the bound vortices or other wake 

vortices. 

 

Figure 3. Schematic diagram of formation vortex at the surface of structure and 

wake vortex at trailing edge 

The contribution of a unit strength vortex located at point j towards 

collocation point i due to all N vortex elements and the latest instantaneously 

formed wake vortex Γw at a given instant of time may be rewritten as 
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Where,  ( )
. .

i s wRhs u U t V n

 
= − − +  

 
, U∞(t) is free stream kinematic velocity, Vw 

is velocity component due to the wake vortices (except the latest wake vortex), 

.

su  

is velocity of structure.  

The latest new born vortex may be obtained from the Kelvin condition 

( )
0

d d t d w

dt dt dt

  
= + =  (12) 

The wake vortex at any time step t may be obtained 
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Where, instantaneous circulation ( )
1

N

j

j

t
=

 =   is the vortex strength on the surface 

of the structure. 

2.2 Boundary Condition for an Oscillating Cantilever Beam in Oscillating Fluid 

Flow 

A cantilever beam is submerged in an oscillating fluid medium as shown in 

Figure 4.  The beam is performing an oscillation transverse to the flow direction. 

The strength of vortex on the surface of the structure may be determined by 

applying the no-penetration fluid –solid interface boundary condition. 

 

Figure 4. A cantilever beam oscillating periodically in oscillating fluid medium 

The no penetration boundary condition for the structural surface may be 

written as   

.

0vort su n U n u n
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Where, (t)U   is free stream velocity and it is   ( )cos f

U

U V t
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

 
 

=  
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 

, ( )vortu t is 

vortex induced velocity, n


 is normal at the collocation point on the solid surface 

at time t, 

.

su  is velocity of plate at any time t. 

3 Pressure and Lift Force on the Structure Due to Vortex Formation 

If the flow field is known then the fluid dynamic pressure on the structure 

may be computed from the unsteady Bernoulli equation 

( )
2

2f

p p

t

 




− 
= +


 (15) 

Where,  , ,u v w =  velocity of fluid in the domain. 

Due to vortex formation on the surface of structure there is pressure 

difference between lower surface and upper surface of the structure which gives a 

lift force on the structure.  

The pressure difference across the thin vortex surface may be written as 

1 up p p = −  (16) 

Where, lp  pressure on the lower surface and up  pressure on the upper 

surface. Pressure difference between lower surface and upper surface may be 

written as for unsteady flow ( Katz and Plotkin 2001). 

0
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Where 

0

( , ) ( , )

x

x t dx x t =   is the total vortex strength within the element of length 

x.  

The normal lift force on the structure due to vortex formation may be written as 

0
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Lift force at each panel due to circulation jΓ may be written as 

j f jL U  =   (19) 

Total lift force on the structure may be written as 

1

N

L j

J

F L
=

=   (20) 

4 Numerical Examples 

A fluid passes over a flat plate with uniform free stream velocity U∞. The 

centerline of the plate of length Lb is shown in Figure 5. The plate is inclined at a 

small angle α with the flow direction. The centerline of the flat plate is 

represented by line (cantilever beam) with five discrete vortices on its surface. 

The strength of vortices on the surface of the beam is evaluated numerically. 

The length of the beam Lb is divided into five number of finite element and 

length of each element is a = Lb/5 as shown in Figure 5 (a). 

  

Cantilever beam discretized into finite 

element 

Vortex point and collocation point 

within an element 

 

Figure 5. Schematic representation of nodes, vortex point and collocation point on 

the surface of structural element 

The formation of vortices and its strength may be simulated with 

distribution of point vortices over the surface of the beam.  For the analysis the 

vortex point is placed at position 0.25a and collocation point at 0.75a of each 

element as shown in Figure 5 (b) as similar position is chosen by Katz and Plotkin 

(2001).  The strength of vortex on the beam surface is evaluated numerically for a 

uniform flow velocity passes the structural element and presented in Table 1. The 

strength of vortex at five selected point on the structural element is evaluated. 
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The magnitude of the vortex strength is presented in the form 

sinaU


 


=  in 

Table 1 to compare the results with the results of Katz and Plotkin (2001).  The 

strength of vortex at five points is denoted by 1, 1, ... 5 and corresponding non-

dimensional vortex strength is γ1, γ2, ... γ5.  

From Table 1, it is observed that the magnitude of vortex strength at each 

vortex point is well matched with the results of Katz and Plotkin (2001). The 

vortex strength decreases slowly in the trailing edge compared to the leading 

edge. 

Table 1. Comparison of vortex strength for uniform flow passes over the beam 

structure 

 

4.1 Numerical Example 1 

A fluid with flow velocity ( ) ( )0 sin fU t U t =   passes over a rigid structural 

element (Figure 5 (a)) of length (Lb) 0.5m and breadth 0.04m. The structural 

element is inclined at a small angle α =1 with the flow direction.  The vortex 

strength and lift force at the surface of the structural element is evaluated for ... 

at time instant t=0.2s. 

The strength of vortex at a point x/Lb=0.2 on the surface of the structural 

element is evaluated for sinusoidal fluid flow velocity over the structural element.  

The variation of vortex strength with fluid flow frequency is presented in Figure 6. 

It is observed from Figure 6 that the vortex strength at any point varies 

sinusoidally with fluid flow frequency which is sinusoidal. This shows that the 
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strength of vortex depends on magnitude of flow velocity and frequency of 

oscillating fluid flow velocity that are interacting with structural element. 

 

Figure 6. Vortex strength at a point x/Lb=0.2 on the surface of structural element 

for periodic flow ( ) ( )0 sin fU t U t =   

For similar conditions, pressure and lift coefficients are evaluated for the 

structural element and presented in Figure 7.  It is observed from Figure 7 that 

pressure and lift coefficient vary periodically with change of flow frequency. 

Sudden jump of magnitude of the pressure and lift coefficients are observed at 

certain interval of flow frequency. The jump may be due to the change of the 

direction of flow that passes the structural element. 

  

(a) (b) 

 

Figure 7. Variation of (a) Pressure coefficient (b) Lift coefficient for sinusoidal 

motion of fluid over a rigid structural element with different fluid flow frequency 
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4.2 Numerical Example 2 

A structural element (rigid beam) of length (Lb) 0.5m and width 0.04m is 

considered. The structural element can perform periodical motion in transverse 

direction in fluid medium as shown in Figure 8. The motion of the structural 

element is represented by ( )0 sin bt =   with 0 = 0.0044 and Ωb = 5.2 rad/s. An 

oscillating flow ( ) ( )0 cos fU t U t =    passes over the structural element with U0 = 

1.0 m/s and Ωf = 5.2 rad/s. 

 

Figure 8. Oscillating rigid structural element in oscillating fluid media 

The strength of vortex at a point x/Lb = 0.2 on the surface of the beam is 

evaluated for different frequencies of the structure. The variation of vortex 

strength is presented in Figure 9 with reduced frequency 
ba

U


. Where, a is the 

distance between two vortices point. It is observed from Figure 9 that the vortex 

strength at any point on the surface of structural element increases with increase 

in the reduced frequency 
ba

U


.  
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Figure 9. Vortex strength at a point x/Lb = 0.2 for sinusoidal flow passes over the 

transversely oscillated rigid cantilever beam in fluid 

For similar conditions, lift and pressure coefficients are evaluated and 

presented in Figure 10 on the structural element.  It is observed from Figures 

10(a) and (b) that lift and pressure coefficients depend on the frequency of 

structural element. With the increase in frequency of the structural element, lift 

and pressure coefficients increase. Resonance type ncrement of pressure and lift 

coefficients are observed with the increase of frequency of structural element. 

  

(a) (b) 

Figure 10. Variation of (a) Pressure coefficient (Cp) (b) Lift coefficient (CL) for 

sinusoidal flow over a transversely oscillated rigid beam structure 

The variation of vortex strength at a point x/Lb = 0.2 on the structural 

element is evaluated with time for the sinusoidal flow over the structural element 

and presented in Figure 11. As the vibrational frequency of the structural element 
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and frequency of fluid flow velocity is kept constant, the strength of vortex at any 

point on the surface of structure varies periodically. 

 

Figure 11. Variation of vortex strength at a point x/Lb = 0.2 on structural element 

with time for sinusoidal flow passes over the structure 

The lift and pressure coefficients are evaluated with time and presented in 

Figure 12. It is observed from Figure 12 that the peak magnitude of lift and 

pressure coefficients occur at an interval of time. 

  

(a) (b) 

Figure 12. Variation of (a) Pressure coefficient (Cp) (b) Lift coefficient (CL) with time 

due to sinusoidal flow passes over a periodically oscillating rigid structural 

element 

5 Conclusion 

Vortex is formed on the surface of structural element whenever fluid passes 

over the structural element. The formation of vortex on the surface of structural 
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element that is vibrating and interacting with oscillating fluid is simulated. In 

simulation, it is assumed that the structure vibrates in fluid medium in its 

vacuum mode. The response of structural element is evaluated by Newmark’s time 

scheme. The deformed shape of structural element at any instant of time is 

replaced by an imaginary vortex sheet. The strength of vortices at any instant of 

time is evaluated by velocity compatibility at the interface of fluid and structure. 

A number of point vortices are distributed on the surface of vortex sheet. 

Mathematically, the point vortices are singular point on the surface of deformed 

shape of the structural element. Green’s function of Laplace equation is applied 

for finding the vortex strength. The strength of vortex depends on fluid velocity 

and its frequency. The lift and pressure forces on the structural element due to 

vortex formation is evaluated and it is observed that pressure and lift forces 

depends on the velocity of structure and flow velocity around the structural 

element. 
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